硫酸吲哚酚对肌少症信号通路及CKD患者肌细胞的影响论文

2024-06-13 11:10:56 来源: 作者:xieshijia
摘要:肌少症是慢性肾脏病(chronic kidney disease,CKD)患者常见的并发症之一,主要是由蛋白质摄入不足、活动量减少、慢性炎症等原因导致的肌肉质量、重量及功能异常,最终导致肌肉萎缩的一类临床并发症。硫酸吲哚酚(indoxyl-sulfate,IS)作为蛋白结合性尿毒症毒素,不易通过临床药物及肾脏替代治疗去除,其能通过调控各信号因子,影响多条肌少症通路及机制对骨骼肌细胞造成损害。本文通过总结肌少症主要信号通路及机制,探讨IS是如何导致线粒体功能障碍、骨骼肌细胞萎缩、纤维化等病理情况,从而导致C
【摘要】肌少症是慢性肾脏病(chronic kidney disease,CKD)患者常见的并发症之一,主要是由蛋白质摄入不足、活动量减少、慢性炎症等原因导致的肌肉质量、重量及功能异常,最终导致肌肉萎缩的一类临床并发症。硫酸吲哚酚(indoxyl-sulfate,IS)作为蛋白结合性尿毒症毒素,不易通过临床药物及肾脏替代治疗去除,其能通过调控各信号因子,影响多条肌少症通路及机制对骨骼肌细胞造成损害。本文通过总结肌少症主要信号通路及机制,探讨IS是如何导致线粒体功能障碍、骨骼肌细胞萎缩、纤维化等病理情况,从而导致CKD患者肌少症。
【关键词】肌少症;硫酸吲哚酚;慢性肾脏病;肌细胞;信号通路
Effect of Indoxyl-sulfate on Sarcopenia Signaling Pathways and Muscle Cells in Patients with CKD/HUANG Shiqi,CUI Shiyan,XU Penghao,JIANG Chen.//Chinese and Foreign Medical Research,2024,22(7):155-159
[Abstract]Sarcopenia is one of the common complications inpatients with chronic kidney disease(CKD),it is mainly a clinical complication of muscle mass,weight and function abnormalities and muscle atrophy caused by insufficient protein intake,reduced activity and chronic inflammation.Indoxyl-sulfate(IS),as a protein-bound uremic toxin,is not easy to be removed by clinical drugs and renal replacement therapy,it can affect multiple sarcopenic pathways and mechanisms by regulating various signaling factors and cause damage to skeletal muscle cells.This article summarized the main signaling pathways and mechanisms of sarcopenia,and explored how IS leads to mitochondrial dysfunction,skeletal muscle cell atrophy,fibrosis and other pathological conditions,leading to sarcopeniain CKD patients.By summarizing the main signaling pathways and mechanisms of sarcopenia,this paper exploreshow IS causes mitochondrial dysfunction,skeletal muscle cell atrophy and fibrosis.
[Keywords]Sarcopenia Indoxyl-sulfate Chronic kidney disease Muscle cells Signaling pathways
First-author's address:The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine,Tianjin 300381,China
在慢性肾脏病(chronic kidney disease,CKD)患者中,由于食欲减退、活动量减少、慢性炎症等原因导致的选择性肌肉改变、肌肉力量降低和明显肌肉萎缩,称之为尿毒症肌少症[1]。已知肌少症会增加CKD患者全因死亡率及进展至终末期肾病(end stage renal disease,ESRD)风险[2],而尿毒症毒素蓄积作为CKD患者一个重要特征,因其有害且具有细胞毒性,会导致各种并发症,其亦是导致CKD患者肌少症的一个重要因素[3]。
尿毒症毒素依据生化特征可分为3类:(1)小分子、水溶性、不与蛋白结合毒素,如肌酐、尿酸、尿素氮、胍类等,此类物质易被血液透析清除;(2)中分子物质,如β2-微球蛋白、甲状旁腺激素等,此类物质分子质量较大,只能通过大孔径透析膜的血液净化方式清除;(3)毒性最强的蛋白结合性毒素,如硫酸吲哚酚(indoxyl-sulfate,IS)、硫酸对甲酚(P-cresol sulfate,PCS),此类毒素即使血液净化方式依旧清除率极差[4],此类蛋白结合性毒素通过氧化应激破坏氧化还原稳态和线粒体代谢下调而显示出强烈的肾血管毒性,对多系统如心血管系统、消化系统、神经系统等具有负性影响,其中,对骨骼肌系统影响巨大,作为最具代表性的毒素——IS,其能通过调控肌少症相关信号通路影响CKD患者骨骼肌再生与萎缩,导致肌肉力量与质量下降,影响患者的生存质量。
1 IS参与调控肌少症信号通路
IS来源于色氨酸代谢(吲哚途径),色氨酸被吲哚中的肠道细菌消化后,吸收的吲哚在肝脏中代谢为IS,最终通过肾小管分泌被肾脏清除。随着CKD进展,肾排泄率降低,IS在循环中累积,不仅能导致心血管钙化[5]、通过损害成骨细胞与破骨细胞导致骨损伤[6]、导致肠道炎症[7]等,还能通过以往大家熟知的关于CKD肌肉功能障碍机制如蛋白水解代谢失调、自噬和萎缩途径的激活等途径导致骨骼肌损伤。故以下首先对IS所涉及的肌少症信号通路及机制进行总结。
1.1氧化应激、炎症介质的生成
当骨骼肌细胞暴露于IS中时,一氧化氮(nitric oxide,NO)生物利用度降低,通过激活烟酰胺腺嘌呤二核苷酸磷酸(reduced nicotinamide adenine dinucleotide phosphate,NADPH)氧化酶导致活性氧(reactive oxygen species,ROS)产生增加,IS能显著增加C2C12肌母细胞中的细胞内ROS水平,抑制细胞增殖,并减少肌源分化为肌球蛋白重链,从而导致肌萎缩。成肌细胞(活化的卫星细胞)中细胞内ROS数量的增加可同时引起成肌细胞中炎症细胞因子[肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素-6(interleukin-6,IL-6)和转化生长因子-β(transforming growth factor-β,TGF-β)]等的释放,这些过氧化物以及炎症因子会通过调控相关肌萎缩信号通路刺激肌生长抑制素及肌萎缩蛋白Fbox-1(Atrogin-1)等激素或信号因子的产生,同时导致自噬[8],最终导致肌萎缩[9]。并且经过以往研究报道,与肌少症相关的细胞途径大多数都被证明受到ROS的刺激[10],且大多数亦与全身炎症相关[11]。
1.2肌肉生长抑制素
肌肉生长抑制素亦称为生长分化因子-8(growth differentiation factor-8,GDF-8),是TGF-β家族的成员[12]。已有研究证明,肌肉生长抑制素水平与肌少症呈正相关[13],其能导致肌肉蛋白质降解并抑制卫星细胞功能。最常见的就是,肌细胞中生成的ROS与炎症因子诱导肌肉生长抑制素的表达[14]。GDF-8与具有丝氨酸/苏氨酸激酶活性的ⅡB型激活素受体结合,信号通过两个级联Smad2/3和p38MAPK转导。Smad2/3是一种转录因子,不仅直接与DNA结合以诱导靶基因的转录,而且还直接与Forkhead box O(FOXO)结合以控制泛素E3连接酶Atrogin-1和MuRF-1,导致泛素-蛋白酶体介导的蛋白质降解[15]。所以可以发现,肌少症所涉及的途径都是相互联系相互调控的。
1.3胰岛素样生长因子-1(insulin-like growth factor-1,IGF-1)/磷脂酰肌醇-3激酶(phosphatidyqinositol-3 kinase,PI3K)/蛋白激酶B(angelo ktsakopoulos,Akt)/雷帕霉素机械靶蛋白(mechanistic target of rapamycin,mTOR)信号通路
骨骼肌质量受蛋白质合成及分解平衡的影响,该通路是调控骨骼肌分化的重要信号转导通路,是蛋白质合成的正性调节因子。肝脏所分泌的IGF-1刺激肌肉肥大,激活该信号通路,在骨骼肌细胞中,PI3-K激活AKT,AKT通过磷酸化激活mTOR,mTOR激活核糖体蛋白S6激酶70 kDa(70 kDa ribosomal protein S6 kinase 2,p70S6K),直接或间接激活真核起始细胞因子2、4E(eukaryotic translation initiation factor 2,4E,eIF-2、eIF-4E)激活翻译过程[16]。mTOR存在于两个功能不同的多蛋白信号复合物:mTORC1和mTORC2,mTORC1能调节多种合成代谢过程[17],包括蛋白质合成、核糖体生物发生和线粒体生物发生,以及分解代谢过程。1.4泛素-蛋白酶体系统(ubiquitin-proteasome system,UPS)
UPS参与骨骼肌中蛋白质降解,适当活性的UPS途径有利于维持蛋白质水平。分泌糖蛋白Dickkopf 3(Dkk3)通过诱导β-连环蛋白表达并增强其与叉头框蛋白O3(forkhead box O3,FOXO3)的相互作用,FOXO3激活泛素连接酶E3s(Fbxo32和Trim63)的转录,从而促进肌肉萎缩。有趣的是,经过PI3K/Akt途径,除了可以影响mTOR信号,还可以激活另一条途径:调控叉头框蛋白O(forkhead box O,FOXO)介导的蛋白酶体活性(如泛素连接酶Atrogin-1)来调控蛋白质降解。
1.5自噬
自噬是指通过膜包裹部分细胞质和细胞中需要降解的细胞器和蛋白质而形成自噬体。自噬体与溶酶体融合形成自噬溶酶体,降解内容物,实现细胞稳态和细胞器更新[18]。骨骼肌中的UPS和溶酶体-自噬系统是相互连接的[19],而FOXO3是这两种通路共同的调节因子,也是Atrogin-1和萎缩因子肌肉环指蛋白1(muscle-specific RING finger protein 1,MuRF-1)的转录调控因子,调节自噬相关基因的表达。自噬依赖的蛋白降解似乎也受到TNF受体相关因子(TNF receptor associated factors,TRAF)6和过氧化物酶体增殖物激活受体γ辅助因子1α(peroxisome proliferators-activated receptorγcoactivator-1α,PGC-1α)的调节,相关基因人微管相关蛋白轻链3Ⅱ(human microtubule-associated protein light chain 3Ⅱ,LC3Ⅱ)和苄氯素1(beclin 1)的表达以及相关蛋白的改变在肌少症的自噬体系中也比较多见[20]。
2 IS对骨骼肌细胞的影响
骨骼肌细胞是由原始细胞:卫星细胞进化而来,卫星细胞是静止的,在肌肉损伤或生长刺激后被激活。活化的卫星细胞,称为成肌细胞,开始增殖。它们可以产生必要的肌源性祖细胞以形成新的肌肉纤维,或它们可以恢复到静止状态以维持卫星细胞集[21]。接下来探讨IS是如何通过诱导各通路系统影响成肌细胞导致肌萎缩。
线粒体在骨骼肌生成中起着重要作用。当成肌细胞分化成肌管时,线粒体的内容和形态会改变。如肌母细胞分化发作后线粒体含量、质量和体积就会显著增加。而IS对骨骼肌细胞多从破坏其线粒体方面影响其功能。
CKD患者的肌肉萎缩与骨骼肌细胞线粒体相关。线粒体DNA(mitochondrial DNA,mtDNA)拷贝数是线粒体含量的指标,而CKD患者的拷贝数低于健康受试者。并且,mtDNA拷贝数减少是CKD患者死亡的潜在危险因素。有实验证明,IS干预后的小鼠线粒体mtDNA拷贝数有相应减少。mtDNA拷贝数受线粒体动力学和生物学调控[22],该实验通过对小鼠C2C12细胞进行逆转录和实时定量聚合酶链反应(polymerase chain reaction,PCR)发现IS处理后Mfn1和Mfn2的mRNA表达显著降低,它们是C2C12细胞中线粒体融合标志物,线粒体融合对于维持mtDNA的稳态至关重要,因为线粒体融合因子的缺乏会诱导mtDNA突变的积累和mtDNA拷贝数的减少[23]。可以理解为IS可能影响细胞的融合,影响线粒体含量[24]。
线粒体的量还受线粒体生物合成及其降解的调节。有报道显示,肌肉线粒体的数量在CKD小鼠的早期减少,并且与氧化应激和炎症细胞因子增加有关[25],IS既能显著降低过氧化物酶体增殖物激活受体γ共激活剂1-α(peroxisome proliferator-activated receptor gamma coactivator 1-alpha,PGC-1α)(线粒体生物合成和自噬的主要调节因子)的mRNA表达,增加LC3Ⅱ/LC3Ⅰ的比值,提示诱导自噬;又能通过氧化应激和炎症介质的生成导致PGC-1α的表达减少,导致膜电位降低,增加线粒体的降解[26]。
众所周知,细胞有氧呼吸要经过糖酵解、三羧酸循环和氧化磷酸化(oxidative phosphorylation,OXPHOS)释放能量,有实验证明,小鼠C2C12细胞随着IS暴露,可显著降低三羧酸循环的中间代谢物(2-氧戊二酸、富马酸盐和苹果酸盐),并且其细胞耗氧率(oxygen consumption rate,OCR)、最大糖酵解能力、最大呼吸能力以时间依赖性方式显著降低,最终导致线粒体生成ATP能力显著下降[27]。并且,当IS通过减少线粒体能量转移进而导致线粒体酶活性降低,OXPHOS电导和呼吸能力降低,破坏电子传输系统(electronic transmission system,ETS),增强电子泄漏[28]。由此可知,线粒体功能、糖酵解、三羧酸循环、OXPHOS在IS暴露下均受损,虽然最后发现糖酵解增加,但可以理解为补偿线粒体ATP产生受损所发生的的代偿现象。
最后,发现C2C12细胞在高剂量IS+PC环境中时,使用划痕伤口愈合测定法分析,细胞在增殖的S期和G2/M期之间经历了戏剧性的细胞周期停滞,阻止其进入M期,并促进了cdc2磷酸化并使细胞周期蛋白B/cdc2复合物失活,这些细胞并未进展到细胞分裂。当其在低剂量IS+PC环境中时,毒素抑制了肌生成蛋白(myogenic differentiation,MyoD)的表达,损害成肌细胞的肌源性分化,导致肌管生成的减少。并可以通过增加转化生长因子-β1(transforming growth factor-β1,TGF-β1)和α-平滑肌肌动蛋白的表达从而诱导成肌细胞纤维化[29]。
当成肌细胞诱导肌原素融合后,会形成长条形多核细胞,即肌管细胞,其边周含有肌原纤维,最后会分化成成熟的肌纤维。并且,在UPS中,观察到IS能诱导ROS的生成增加,24 h内激活成肌细胞内磷酸化细胞外信号调节激酶1/2(phospho-extracellular signal-regulated kinase 1/2,pERK1/2)、磷酸化氨基末端蛋白激酶(phosphorylated c-Jun N-terminal kinase,pJNK)和p38,诱导丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPKs)最大磷酸化,而MAPKs的激活在肌肉萎缩中起着关键作用[30],同时实验中观察到肌管直径明显减少。并且ROS的增加导致的pJNK激活,诱导了肌肉萎缩相关因子泛素蛋白连接酶抗体(muscle atrophy f-box,MAFbx)的mRNA表达及相关蛋白的上调,并附带磷酸化肌球蛋白轻链(phosphorylation of myosin light chain,pMLC)和肌肉特异性环指蛋白1(muscle-specific RING-finger protein 1,MURF1)的表达增加,两者亦是肌肉萎缩相关基因。基于此,IS介导的肌管萎缩是可以通过C2C12细胞中的ROS-细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)轴和JNK-MAFbx调节进行操纵[31]。
IS作为具有强毒性的蛋白结合性毒素,通过血液循环对全身各系统均会造成损害,并且可以通过肌少症相关通路途径损害骨骼肌线粒体、基质,影响肌纤维生成,诱导肌萎缩,但是因其与白蛋白结合率高,即便现阶段可以进行血液透析、血液滤过等清除有毒物质手段,依旧无法对IS做到有效全面清除。同时提醒广大医务工作者,要高度关注CKD患者肌少症发病率及临床症状,积极早期干预进行治疗,以提高患者生存率、改善生存质量。
参考文献
[1]FAHAL I H.Uraemic sarcopenia:aetiology and implications[J].Nephrol Dial Transplant,2014,29(9):1655-1665.
[2]WILKINSON T J,MIKSZA J,YATES T,et al.Association of sarcopenia with mortality and end-stage renal disease in those with chronic kidney disease:a UK Biobank study[J].J Cachexia Sarcopenia Muscle,2021,12(3):586-598.
[3]LEE S M,HAN M Y,KIM S H,et al.Indoxyl Sulfate might play a role in sarcopenia,while myostatin is an indicator of muscle mass in patients with chronic kidney disease:analysis from the RECOVERY study[J].Toxins(Basel),2022,14(10):660.
[4]方吕贵,宣铭杨,杜亚婷,等.尿毒症毒素与慢性肾脏病肌少症的关系研究进展[J].中国血液净化,2022,21(7):521-524.
[5]OPDEBEECK B,D'HAESE P C,VERHULST A.Molecular and cellular mechanisms that induce arterial calcification by indoxyl sulfate and P-cresyl sulfate[J].Toxins(Basel),2020,12(1):58.
[6]SHYU J F,LIU W C,ZHENG C M,et al.Toxic effects of indoxyl sulfate on osteoclastogenesis and osteoblastogenesis[J].Int J Mol Sci,2021,22(20):11265.
[7]RYSZ J,FRANCZYK B,ŁAWIŃSKI J,et al.The impact of CKD on uremic toxins and gut microbiota[J].Toxins(Basel),2021,13(4):252.
[8]LLOBERAS J,MUNOZ J P,HERNÁNDEZ-ÁLVAREZ M I,et al.Macrophage mitochondrial MFN2(mitofusin 2)links immune stress and immune response through reactive oxygen species(ROS)production[J].Autophagy,2020,16(12):2307-2309.
[9]LU C L,ZHENG C M,LU K C,et al.Indoxyl-sulfate-induced redox imbalance in chronic kidney disease[J].Antioxidants(Basel),2021,10(6):936.
[10]PASCUAL-FERNÁNDEZ J,FERNÁNDEZ-MONTERO A,CÓRDOVA-MARTÍNEZ A,et al.Sarcopenia:molecular pathways and potential targets for intervention[J].Int J Mol Sci,2020,21(22):8844.
[11]DEGER S M,HUNG A M,GAMBOA J L,et al.Systemic inflammation is associated with exaggerated skeletal muscle protein catabolism in maintenance hemodialysis patients[J/OL].JCI Insight,2017,2(22):e95185.
[12]VERZOLA D,BARISIONE C,PICCIOTTO D,et al.Emerging role of myostatin and its inhibition in the setting of chronic kidney disease[J].Kidney Int,2019,95(3):506-517.
[13]WIDAJANTI N,SOELISTIJO S,HADI U,et al.Association between sarcopenia and insulin-like growth factor-1,myostatin,and insulin resistance in elderly patients undergoing hemodialysis[J].J Aging Res,2022,2022:1327332.
[14]WATANABE H,ENOKI Y,MARUYAMA T.Sarcopenia in chronic kidney disease:factors,mechanisms,and therapeutic interventions[J].Biol Pharm Bull,2019,42(9):1437-1445.
[15]NISHI H,TAKEMURA K,HIGASHIHARA T,et al.Uremic sarcopenia:clinical evidence and basic experimental approach[J].Nutrients,2020,12(6):1814.
[16]SAKUMA K,AOI W,YAMAGUCHI A.Molecular mechanism of sarcopenia and cachexia:recent research advances[J].Pflugers Arch,2017,469(5-6):573-591.
[17]ZONCU R,EFEYAN A,SABATINI D M.mTOR:from growth signal integration to cancer,diabetes and ageing[J].Nat Rev Mol Cell Biol,2011,12(1):21-35.
[18]CAO W,LI J,YANG K,et al.An overview of autophagy:mechanism,regulation and research progress[J].Bull Cancer,2021,108(3):304-322.
[19]WANG Y,LE W D.Autophagy and ubiquitin-proteasome system[J].Adv Exp Med Biol,2019,1206:527-550.
[20]SAKUMA K,KINOSHITA M,ITO Y,et al.p62/SQSTM1 but not LC3 is accumulated in sarcopenic muscle of mice[J].J Cachexia Sarcopenia Muscle,2016,7(2):204-212.
[21]SOUSA-VICTOR P,MUNOZ-CÁNOVES P.Regenerative decline of stem cells in sarcopenia[J].Mol Aspects Med,2016,50:109-117.
[22]ADEBAYO M,SINGH S,SINGH A P,et al.Mitochondrial fusion and fission:the fine-tune balance for cellular homeostasis[J/OL].FASEB J,2021,35(6):e21620.
[23]CHEN H,VERMULST M,WANG Y E,et al.Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations[J].Cell,2010,141(2):280-289.
[24]SASAKI Y,KOJIMA-YUASA A,TADANO H,et al.Ursolic Acid improves the indoxyl sulfate-induced impairment of mitochondrial biogenesis in C2C12 cells[J].Nutr Res Pract,2022,16(2):147-160.
[25]WOLDT E,SEBTI Y,SOLT L A,et al.Rev-erb-αmodulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy[J].Nat Med,2013,19(8):1039-1046.
[26]ENOKI Y,WATANABE H,ARAKE R,et al.Potential therapeutic interventions for chronic kidney disease-associated sarcopenia via indoxyl sulfate-induced mitochondrial dysfunction[J].J Cachexia Sarcopenia Muscle,2017,8(5):735-747.
[27]SATO E,MORI T,MISHIMA E,et al.Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopeniain chronic kidney disease[J].Sci Rep,2016,6:36618.
[28]THOME T,SALYERS Z R,KUMAR R A,et al.Uremic metabolites impair skeletal muscle mitochondrial energetics through disruption of the electron transport system and matrix dehydrogenase activity[J].Am J Physiol Cell Physiol,2019,317(4):C701-C713.
[29]ALCALDE-ESTÉVEZ E,SOSA P,ASENJO-BUENO A,et al.Uraemic toxins impair skeletal muscle regeneration by inhibiting myoblast proliferation,reducing myogenic differentiation,and promoting muscular fibrosis[J].Sci Rep,2021,11(1):512.
[30]SHI H,SCHEFFLER J M,ZENG C,et al.Mitogen-activated protein kinase signaling is necessary for the maintenance of skeletal muscle mass[J].Am J Physiol Cell Physiol,2009,296(5):C1040-C1048.
[31]CHANGCHIEN C Y,LIN Y H,CHENG Y C,et al.Indoxyl sulfate induces myotube atrophy by ROS-ERK and JNK-MAFbx cascades[J].Chem Biol Interact,2019,304:43-51.
